FELSTED PRIMARY SCHOOL CALCULATION POLICY 2024

Nurturing today's minds for tomorrow's challenges

- Be Respectful
- Be positive
- Be the best you can be
- Save our world!

1 Aims and objectives

1.1 This policy supports the White Rose Maths scheme used throughout the school. Progression within each area of calculation is in line with the programme of study in the 2014 National Curriculum. This calculation policy should be used to support children to develop a deep understanding of number and calculation.
1.2 This policy has been designed to teach children through the use of concrete, pictorial and abstract representations:

- Concrete representation- a pupil is first introduced to an idea or skill by acting it out with real objects. This is a 'hands on' component using real objects and is a foundation for conceptual understanding
- Pictorial representation - a pupil has sufficiently understood the 'hands on' experiences performed and can now relate them to representations, such as a diagram or picture of the problem
- Abstract representation-a pupil is now capable of representing problems by using mathematical notation, for example $12 \times 2=24$

It is important that conceptual understanding, supported by the use of representation, is secure for all procedures. Reinforcement is achieved by going back and forth between these representations

2 Mathematics Mastery

2.1 At the centre of the mastery approach to the teaching of mathematics is the belief that all children have the potential to succeed. They should have access to the same curriculum content and, rather than being extended with new learning, they should deepen their conceptual understanding by tackling challenging and varied problems. Similarly, with calculation strategies, children must not simply rote learn procedures but demonstrate their understanding of these procedures through the use of concrete materials and pictorial representations. This policy outlines the different calculation strategies that should be taught and used in Years R to Year 6 in line with the requirements of the 2014 Primary National Curriculum.

3 How to use the policy

3.1 This mathematics policy is a guide for all staff at Felsted Primary School. All teachers have been given the scheme of work from the White Rose Maths Hub and are required to base their planning around their year group's modules and not to move onto a higher year group's scheme work.
3.2 Teachers have flexibility to adapt the learning and teaching to meet the individual needs of the pupils in their class.
3.3 Teachers can use any teaching resources that they wish to use and the policy does not recommend one set of resources over another, rather that, a variety of resources are used.
3.4 For each of the four rules of number, different strategies are laid out, together with examples of what concrete materials can be used and how, along with suggested pictorial representations. The principle of the concrete-pictorial-abstract (CPA) approach [Make it, Draw it, Write it] is for children to have a true understanding of a mathematical concept, they need to master all three phases within a year group's scheme of work.

Addition

Year Group	Activities	What it looks like
Foundation	counting on using objects / Numicon, supported by number track Count beyond 20 emphasising the 'teen' numbers $-\quad$ one more than $-\quad$ making sets of objects and combining $-\quad$ language of addition, use of balance scales and counting objects (such as compare bears) to show equivalence - using Cuisennaire, multilink, Numicon and other apparatus to build a picture of numbers to 20	

One	number bonds to 10 - fingers, Numicon, tens frame, counters $-\quad$ use understanding of teen numbers to find bonds to 20. number facts for all numbers to $10-$ fingers, Numicon, count on. $-\quad$ use cubes supported by number tracks / lines. $-\quad$ place number in head and count on fingers (beyond 10) - solve missing number problems using objects and pictorial representations. $-\quad$begin to represent tens and units using apparatus (including coins - tens and ones, base 10 apparatus, numicon) focus on understanding of teen numbers. add a single digit to numbers to 100. know 1 more for all numbers to 100. $-\quad$

		$4+2=6$ $4+\square=6$ $4+6=10$ $6+\square=10$	$\begin{aligned} & 8+=88 \\ & 8+m=88 \\ & 4+2=6 \end{aligned}$

Two	-counting on in 10 s and units from any number base 10, Numicon, pictorial representations. -missing numbers -continue number lines supported by equipment -introducing partitioning with Base 10 equipment, Numicon, coins, tens frames, pictorial representations. empty box questions $4+\square=9$ use of balances to show equivalence begin to use understanding of place value and partitioning to derive number facts e.g. $6+3=$ 9 (known fact) $\begin{aligned} & 16+3=19 \\ & 26+3=29 \end{aligned}$ Add by counting on to ten and adding what is left - supported by tens frames, Numicon, base 10 apparatus. know that addition can be done in any order add two 2-digit numbers by counting on in tens and then ones - use knowledge of partitioning and recombining. - Cross the 10s barrier - practically with base 10 apparatus, coins, Numicon, counters. -add two 2-digit numbers by adding the tens, then ones and re-combine (not bridging the tens barrier) begin to use column addition to add two 2digit numbers Then use expanded column addition to add 2 2-digit numbers. add three single digits use estimation to check answers.	$4+\square=10$ $20+3=23$ $10+10+3=23$ $20+\square=23$ $25+13=$

Subtraction

Year Group	Activities	What it looks like
Foundation	$-\quad$sorting making sets and taking objects away - 'one less' 'how many are left?' number stories (there were 4 cakes and I ate 2, how many did I have left? practical apparatus, Numicon, Multilink, pictorial representations.	

One	Count back using number tracks / number lines / tens frames / counters / 100 grids to support the development of the concept of subtraction as take away. Develop subtraction facts initially to ten and then to 20. - Record related number facts (and make links to related addition facts) e.g. $9-4=5,9-5=$ $4 \quad 4+5=9,5+4$ $=9$ use number bonds to support subtraction develop understanding of the equals sign / equality and the concept of 'empty box' questions, such as $9-\square=5$. - hidden number questions, e.g. 'I have 10 counters and I cover some with my hand. I can see 4 . How many are under my hand?' - count backwards mentally from 10, 20, 100. - know 1 less for any number to 100. - \quad subtract a single digit number from any number to 100 , supported by pictorial representations, Numicon, counters, bead strings, etc.	

Two	-counting back in 10 s and ones Use understanding of patterning, place value and partitioning to derive number facts. e.g. 7-3 $=4$ (known fact) 17-3-14 27-3=24 continue to use knowledge of addition facts to support subtraction facts (number bonds) e.g. $3+7=10 \quad 7+3=10$ $\begin{aligned} & 10-3=7 \\ & 10-7=3 \end{aligned}$ solve difference problems - and use method to solve subtraction where there is a small difference. use practical apparatus - Numicon, tens frames, counters and number tracks /and number lines to support understanding of partitioning and place value, beginning with 'teen' numbers. Also use pictorial representations. -Use number bonds within 20 to support and check with addition. -know that subtraction undoes addition and use this to check calculations. subtract two 2-digit numbers by subtracting the tens then the ones (not bridging the tens barrier) Start by using practical apparatus - Mumicon, Begin to use the column method to subtract a 2 -digit number (not bridging the tens barrier) - use estimation to check answers.	1222222220 $\begin{aligned} & 7+3=10 \\ & 10-3=7 \end{aligned}$ $20-\square=16$ $\frac{20-\square=16}{16+\square=20}$	 \qquad $3-7=6$

Year Group	Activities	What it looks like
Foundation	- count in 10s and 2s using objects - Numicon, counters, draw pictorial representations.	Multilink Numicon
	$-\quad$ pairs/doubles/halves - practically -	
Double and share objects - counters, multilink		
etc. \quad practically make equal groups of a small	Compare bears Pairs of socks, children, shoes Grouping themselves for activities Handprints Footprints	
	given number. -recognise repeated groups (Numicon, counters, objects, etc.)	

Division

Year Group	Activities	What it looks like
Foundation	sharing fairly/equally between a given number of people - practical objects and pictorial representations. sorting objects into equal sized groups. making groups of a given amount	Multilink Numicon Compare bears Pairs of socks, children, shoes Grouping themselves for activities Handprints Solving simple problems in context - E.g. get into groups of 2 in PE.

One	Develop division as dividing by sharing equally between a given number. Develop division as divided into groups of a given number. Use vocabulary dividing. use Numicon, practical objects, counters, to share and group equally. Draw pictorial representations. - halves to 20 - find half a number/amount by sharing equally between 2 and sharing into 2 groups. -practically find half/quarter of a regular shape, recognising all the parts need to be equal. solve simple division word problems.	

Two	-Develop an understanding of division using array, Numicon, objects and pictorial representations showing repeated groups of a given number. e.g. 'How many groups of 3 can we make out of 6?' -Solve division calculations by practically sharing between a given number - use Numicon, practical apparatus and pictorial representations. Solve division calculations by practically making groups of a given number - use Numicon, practical apparatus and pictorial representations. -Develop the use of \div and $=$ symbols to record calculations horizontally e.g. $6 \div 2=3$ Use arrays and other practical apparatus to illustrate making of repeated groups -Begin to use knowledge of multiplication facts to solve simple division $\text { e.g. } 3 \times 2=6 \text { so } 6 \div 2=3 \text { and } 6 \div 3=2-$ begin to recognise the relationship between multiplication and division - using fact families / trio numbers. Use knowledge of times tables facts (2s,5s and 10s) to solve division calculations. Solve division word problems and 'apply' problems.	6 divided by 2 (-9) (0 (0) (T0) \qquad $10 \div 2=$ $10 \div 2=$ 운웇 \because $\begin{gathered} 10 \div 2= \\ 2 \\ 4 \\ 6 \\ 8 \\ 104 \\ 12 \\ 14 \end{gathered}$

Equal Opportunities

Careful planning and awareness of individual children's needs and interests will ensure that every child will have equal access to the Mathematics Curriculum regardless of race, gender or class.

Signed:

Date:

To be reviewed:

